Advantages of Fluid Power

The extensive use of hydraulics and pneumatics to transmit power is due to the fact that properly constructed fluid power systems possess a number of favorable characteristics. They eliminate the need for complicated systems of gears, cams, and levers. Motion can be transmitted without the slack inherent in the use of solid machine parts. The fluids used are not subject to breakage as are mechanical parts, and the mechanisms are not subjected to great wear.

The different parts of a fluid power system can be conveniently located at widely separated points, since the forces generated are rapidly transmitted over considerable distances with small loss. These forces can be conveyed up and down or around corners with small loss in efficiency and without complicated mechanisms. Very large forces can be controlled by much smaller ones and can be transmitted through comparatively small lines and orifices.

If the system is well adapted to the work it is required to perform, and if it is not misused, it can provide smooth, flexible, uniform action without vibration, and is unaffected by variation of load. In case of an overload, an automatic release of pressure can be guaranteed, so that the system is protected against breakdown or strain. Fluid power systems can provide widely variable motions in both rotary and straight-line transmission of power. The need for control by hand can be minimized. In addition, fluid power systems are economical to operate.

The question may arise as to why hydraulics is used in some applications and pneumatics in others. Many factors are considered by the user and/or the manufacturer when determining which type of system to use in a specific application. There are no hard and fast rules to follow; however, past experience has provided some sound ideas that are usually considered when such decisions are made. If the application requires speed, a medium amount of pressure, and only fairly accurate control, a pneumatic system may be used. If the application requires only a medium amount of pressure and a more accurate control, a combination of hydraulics and pneumatics may be used. If the application requires a great amount of pressure and/or extremely accurate control, a hydraulic system should be used.

Pressure and Force

Pressure is force exerted against a specific area (force per unit area) expressed in pounds per square inch (psi). Pressure can cause an expansion, or resistance to compression, of a fluid that is being squeezed. A fluid is any liquid or gas (vapor). Force is anything that tends to produce or modify (push or pull) motion and is expressed in pounds.

An example of pressure is the air (gas) that fills an automobile tire. As a tire is inflated, more air is squeezed into it than it can hold. The air inside a tire resists the squeezing by pushing outward on the casing of the tire. The outward push of the air is pressure. Equal pressure throughout a confined area is a characteristic of any pressurized fluid. For example, in an inflated tire, the outward push of the air is uniform throughout. If it were not, a tire would be pushed into odd shapes because of its elasticity.